Today's news in major cities, regional and local areas hich can include accident reports

Sunday, January 1, 2023

[New post] Optical “tweezer” enables fast, low-cost screening of bacteria and cancer cells

Site logo image bricemarsters posted: " HAVE YOUR SAY.Join us in The Bullpen, where the members of the Scientific Inquirer community get to shape the site's editorial decision making. We'll be discussing people and companies to profile on the site. On Wednesday, January 11 at 5:30pm EST, join " Scientific Inquirer

Optical "tweezer" enables fast, low-cost screening of bacteria and cancer cells

bricemarsters

Jan 1

HAVE YOUR SAY.

Join us in The Bullpen, where the members of the Scientific Inquirer community get to shape the site's editorial decision making. We'll be discussing people and companies to profile on the site. On Wednesday, January 11 at 5:30pm EST, join us on Discord and let's build the best Scientific Inquirer possible.


Researchers from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences (CAS) have proposed a new technology, called optical tweezer-assisted pool-screening and single-cell isolation (OPSI) system, which achieves 99.7% purity of sorting target cells, with all done in real-time.

The study was published in Lab on a Chip on Nov. 29.

Current cell-sorting methods cannot effectively sort cells of various sizes while maintaining their viability for future testing. Compared with the currently used methods, the OPSI technology reduces cost and resources consumed. It also saves time, which is of utmost importance when dealing with abnormal cells or pathogens. 


ON SALE! Charles Darwin Signature T-shirt - "I think." Two words that changed science and the world, scribbled tantalizingly in Darwin's Transmutation Notebooks.

Imagine a regular pair of tweezers: they're used for grabbing small, often unwanted, objects such as a stray hair or splinter. An optical tweezer utilizes this same idea, but instead of a metal object, it is a highly focused laser that can hold, manipulate, and move the desired object, which in this case are the target cells. 

Being able to pick or "tweeze" out certain cells comes in handy when dealing with cancerous or other target cells and pathogens that need to be further studied. This optical tweezer is utilized on a cell pool confined in a microfluidics chip, which is usually a glass slide with microchannels molded into the material. Once the target cell is identified (usually through targeted fluorescence, Raman imaging or bright-field microscopy), it can easily be packaged in a microdroplet and exported in a "one-cell one-tube" manner for later amplification and analysis. 

"Real-time image-based sorting of target cells in a precisely indexed manner is desirable for sequencing or cultivating individual human or microbial cells directly from clinical or environmental samples, however, versatility of existing methods is limited as they are usually not broadly applicable to all cell sizes," said XU Teng, paper-first author from Single-Cell Center of QIBEBT. 

An artificial test mixture of green-fluorescent protein (GFP) E. coli, non-GFP E. coli and yeast were loaded onto the chip in a 1:1:1 ratio, and quickly the GFP bacteria and yeast were separated. 

To further test the efficacy of this method, a mixture using only 0.1% of the GFP E. coli was used, and the fluorescent cells were easily detected and isolated amidst a mixture of other cells of varying sizes.

"The precise isolation and broad spectrum of cell sizes that can be manipulated using OPSI not only allows for easy target cell acquisition but can also greatly reduce the volume required to study the sample," said co-first author LI Yuandong, an engineer at Single-Cell Center of QIBEBT. Isolating and capturing the target cells in microdroplets also maintains a high quality of the cell's information, allowing for more genes to be detected while minimizing the resources needed. "This is of particular importance when it comes to rare or small samples which can easily be consumed entirely in one test which may not even maintain the quality of the sample." 

"Taking advantage of the wide-field imaging rather than detecting single cells one by one in flowing stream, the recognition of target cell can be very fast," said co-corresponding author Prof. XU Jian, from Single-Cell Center of QIBEBT. "OPSI also achieves >99.7% target-cell sorting purity and 10-fold elevated speed of 10~20 cells/min." 

In the next step, introduction of artificial intelligence-based automatic recognition to this OPSI chip method, along with automatic manipulation steps, may further increase the throughput and greatly broaden the usage of this technology, according to Prof. MA Bo from Single-Cell Center of QIBEBT, who led the study.

IMAGE CREDIT: LIU Yang


By clicking submit, you agree to share your email address with the site owner and Mailchimp to receive marketing, updates, and other emails from the site owner. Use the unsubscribe link in those emails to opt out at any time.

Processing…
Success! You're on the list.
Whoops! There was an error and we couldn't process your subscription. Please reload the page and try again.


Comment

Unsubscribe to no longer receive posts from Scientific Inquirer.
Change your email settings at manage subscriptions.

Trouble clicking? Copy and paste this URL into your browser:
https://scientificinquirer.com/2023/01/01/optical-tweezer-enables-fast-low-cost-screening-of-bacteria-and-cancer-cells/

Powered by WordPress.com
Download on the App Store Get it on Google Play
at January 01, 2023
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest

No comments:

Post a Comment

Newer Post Older Post Home
Subscribe to: Post Comments (Atom)

JHI Blog: Recent posts

...

  • [New post] 6 Apps You Must Add to Your iPhone ASAP | FinanceBuzz
    lhvi3...
  • [New post] Germany Offers Free of Cost Work Visas to Indian IT Workers
    Arooj Fatima posted: " Indian IT professionals can now enjoy Germany's one of the best offers in terms of immigration. ...
  • [New post] Is Chicken In A Biskit Coming Back? We Just Got Word That It Might Be
    trentbartlett posted: "Rumours around this snack's return have been floating around the internet for a little while now...

Search This Blog

  • Home

About Me

Today's news in major cities, regional and local areas which can include accident reports, police & emergency responses, criminal and court proceedings or live
View my complete profile

Report Abuse

Blog Archive

  • November 2025 (10)
  • October 2025 (13)
  • September 2025 (10)
  • August 2025 (8)
  • July 2025 (5)
  • June 2025 (7)
  • May 2025 (3)
  • April 2025 (10)
  • March 2025 (8)
  • February 2025 (6)
  • January 2025 (4)
  • December 2024 (6)
  • November 2024 (8)
  • October 2024 (9)
  • September 2024 (8)
  • August 2024 (5)
  • July 2024 (10)
  • June 2024 (10)
  • May 2024 (11)
  • April 2024 (4)
  • March 2024 (1462)
  • February 2024 (3037)
  • January 2024 (3253)
  • December 2023 (3238)
  • November 2023 (3122)
  • October 2023 (3010)
  • September 2023 (2524)
  • August 2023 (2299)
  • July 2023 (2223)
  • June 2023 (2164)
  • May 2023 (2229)
  • April 2023 (2135)
  • March 2023 (2236)
  • February 2023 (2171)
  • January 2023 (2326)
  • December 2022 (2500)
  • November 2022 (2470)
  • October 2022 (2648)
  • September 2022 (1909)
  • August 2022 (1839)
  • July 2022 (1856)
  • June 2022 (1969)
  • May 2022 (2411)
  • April 2022 (2354)
  • March 2022 (1867)
  • February 2022 (1013)
  • January 2022 (1050)
  • December 2021 (1620)
  • November 2021 (3122)
  • October 2021 (3276)
  • September 2021 (3145)
  • August 2021 (3259)
  • July 2021 (3084)
Powered by Blogger.