Today's news in major cities, regional and local areas hich can include accident reports

Wednesday, January 31, 2024

Study reveals Zika’s shape-shifting machinery—and a possible vulnerability

Site logo image scientificinquirer posted: " Viruses have limited genetic material—and few proteins—so all the pieces must work extra hard. Zika is a great example; the virus only produces 10 proteins. Now, in a study published in the journal PLOS Pathogens, researchers at Sanford Burnham" Scientific Inquirer Read on blog or Reader

Study reveals Zika's shape-shifting machinery—and a possible vulnerability

scientificinquirer

January 31

Viruses have limited genetic material—and few proteins—so all the pieces must work extra hard. Zika is a great example; the virus only produces 10 proteins. Now, in a study published in the journal PLOS Pathogens, researchers at Sanford Burnham Prebys have shown how the virus does so much with so little and may have identified a therapeutic vulnerability.

In the study, the research team showed that Zika's enzyme—NS2B-NS3—is a multipurpose tool with two essential functions: breaking up proteins (a protease) and dividing its own double-stranded RNA into single strands (a helicase).

"We found that Zika's enzyme complex changes function based on how it's shaped," says Alexey Terskikh, Ph.D., associate professor at Sanford Burnham Prebys and senior author of the paper. "When in the closed conformation, it acts as a classic protease. But then it cycles between open and super-open conformations, which allows it to grab and then release a single strand of RNA—and these functions are essential for viral replication."


For the ornithologically inclined or the nerd who loves owlish humor, this T-shirt knows whoooo makes science fun! The comfy premium tee is ideal for hitting the books or the lab, going on nature walks to birdwatch, or just making your fellow owl and science fans smile. Hoot hoot - time to fly to the top of the class armed with curiosity and wordplay!

Zika is an RNA virus that's part of a family of deadly pathogens called flaviviruses, which include West Nile, dengue fever, yellow fever, Japanese encephalitis and others. The virus is transmitted by mosquitoes and infects uterine and placental cells (among other cell types), making it particularly dangerous for pregnant women. Once inside host cells, the virus re-engineers them to produce more Zika.

Understanding Zika on the molecular level could have an enormous payoff: a therapeutic target. It would be difficult to create safe drugs that target the domains of the enzyme needed for protease or helicase functions, as human cells have many similar molecules. However, a drug that blocks Zika's conformational changes could be effective. If the complex can't shape-shift, it can't perform its critical functions, and no new Zika particles would be produced.

An efficient machine

Researchers have long known that Zika's essential enzyme was composed of two units: NS2B-NS3pro and NS3hel. NS2B-NS3pro carries out protease functions, cutting long polypeptides into Zika proteins. However, NS2B-NS3pro's abilities to bind single-stranded RNA and help separate the double-stranded RNA during viral replication were only recently discovered.

In this study, the researchers leaned on recent crystal structures and used protein biochemistry, fluorescence polarization and computer modeling to dissect NS2B-NS3pro's life cycle. NS3pro is connected to NS3hel (the helicase) by a short amino acid linker and becomes active when the complex is in its closed conformation, like a closed accordion. The RNA binding happens when the complex is open, whereas the complex must transition through the super-open conformation to release RNA.

These conformational changes are driven by the dynamics of NS3hel activity, which extends the linker and eventually "yanks" the NS3pro to release RNA. NS3pro is anchored to the inside of the host cell's endoplasmic reticulum (ER)—a key organelle that helps shepherd cellular proteins to their appropriate destinations—via NS2B and, while in the closed conformation, cuts up the Zika polypeptide, helping generate all viral proteins.

On the other side of the linker, NS3hel separates Zika's double-stranded RNA and conveniently hands a strand over to NS3pro, which has positively charged "forks" to grab on to the negatively charged RNA.

"There's a very nice groove of positive charges," says Terskikh. "So, RNA just naturally follows that groove. Then the complex shifts to the closed conformation and releases the RNA."

As NS3hel reaches forward to grab the double-stranded RNA, it pulls the complex with it; however, since the NS3pro is anchored in the ER membrane, and the linker can only extend so far, the complex snaps into the super-open conformation and releases RNA. The complex then relaxes back to the open conformation, ready for a new cycle.

Meanwhile, when NS3pro detects a viral polypeptide to cut, it forces the complex into the closed conformation, becoming a protease. The authors call this process "reverse inchworm," because grabbing and releasing the single-stranded RNA resembles inchworm movements, but backward, with the jaws (the protease) trailing behind.

In addition to providing a possible therapeutic target for Zika, this detailed understanding could be applied to other flaviviruses, which share similar molecular machinery.

"Versions of the NS2B-NS3pro complex are found throughout the flaviviruses," says Terskikh. "It could potentially constitute a whole new class of drug targets for multiple viruses."


Sign up for the Daily Dose Newsletter and get the morning's best science news from around the web delivered straight to your inbox? It's easy like Sunday morning.

u003cemu003eBy clicking submit, you agree to share your email address with the site owner and Mailchimp to receive marketing, updates, and other emails from the site owner. Use the unsubscribe link in those emails to opt out at any time.u003c/emu003e

Processing…
Success! You're on the list.
Whoops! There was an error and we couldn't process your subscription. Please reload the page and try again.


Comment

Scientific Inquirer © 2024. Manage your email settings or unsubscribe.

WordPress.com and Jetpack Logos

Get the Jetpack app

Subscribe, bookmark, and get real-time notifications - all from one app!

Download Jetpack on Google Play Download Jetpack from the App Store
WordPress.com Logo and Wordmark title=

Automattic, Inc. - 60 29th St. #343, San Francisco, CA 94110  

at January 31, 2024
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest

No comments:

Post a Comment

Newer Post Older Post Home
Subscribe to: Post Comments (Atom)

JHI Blog: Recent posts

...

  • [New post] Germany Offers Free of Cost Work Visas to Indian IT Workers
    Arooj Fatima posted: " Indian IT professionals can now enjoy Germany's one of the best offers in terms of immigration. ...
  • [New post] 6 Apps You Must Add to Your iPhone ASAP | FinanceBuzz
    lhvi3...
  • [New post] Is Chicken In A Biskit Coming Back? We Just Got Word That It Might Be
    trentbartlett posted: "Rumours around this snack's return have been floating around the internet for a little while now...

Search This Blog

  • Home

About Me

Today's news in major cities, regional and local areas which can include accident reports, police & emergency responses, criminal and court proceedings or live
View my complete profile

Report Abuse

Blog Archive

  • June 2025 (7)
  • May 2025 (3)
  • April 2025 (10)
  • March 2025 (8)
  • February 2025 (6)
  • January 2025 (4)
  • December 2024 (6)
  • November 2024 (8)
  • October 2024 (9)
  • September 2024 (8)
  • August 2024 (5)
  • July 2024 (10)
  • June 2024 (10)
  • May 2024 (11)
  • April 2024 (4)
  • March 2024 (1462)
  • February 2024 (3037)
  • January 2024 (3253)
  • December 2023 (3238)
  • November 2023 (3122)
  • October 2023 (3010)
  • September 2023 (2524)
  • August 2023 (2299)
  • July 2023 (2223)
  • June 2023 (2164)
  • May 2023 (2229)
  • April 2023 (2135)
  • March 2023 (2236)
  • February 2023 (2171)
  • January 2023 (2326)
  • December 2022 (2500)
  • November 2022 (2470)
  • October 2022 (2648)
  • September 2022 (1909)
  • August 2022 (1839)
  • July 2022 (1856)
  • June 2022 (1969)
  • May 2022 (2411)
  • April 2022 (2354)
  • March 2022 (1867)
  • February 2022 (1013)
  • January 2022 (1050)
  • December 2021 (1620)
  • November 2021 (3122)
  • October 2021 (3276)
  • September 2021 (3145)
  • August 2021 (3259)
  • July 2021 (3084)
Powered by Blogger.