Today's news in major cities, regional and local areas hich can include accident reports

Friday, February 16, 2024

Faulty DNA disposal system causes inflammation

Read on blog or Reader
Site logo image bricemarsters posted: " Cells in the human body contain power-generating mitochondria, each with their own mtDNA—a unique set of genetic instructions entirely separate from the cell's nuclear DNA that mitochondria use to create life-giving energy. When mtDNA remains where it be" Scientific Inquirer Read on blog or Reader

Faulty DNA disposal system causes inflammation

bricemarsters

February 16

Cells in the human body contain power-generating mitochondria, each with their own mtDNA—a unique set of genetic instructions entirely separate from the cell's nuclear DNA that mitochondria use to create life-giving energy. When mtDNA remains where it belongs (inside of mitochondria), it sustains both mitochondrial and cellular health—but when it goes where it doesn't belong, it can initiate an immune response that promotes inflammation.

Now, Salk scientists and collaborators at UC San Diego have discovered a novel mechanism used to remove improperly functioning mtDNA from inside to outside the mitochondria. When this happens, the mtDNA gets flagged as foreign DNA and activates a cellular pathway normally used to promote inflammation to rid the cell of pathogens, like viruses.


🌌 Science is not just a subject; it's a way of life. Embrace your inner scientist with our "Science is Golden" tee. Elevate your fashion game while celebrating the beauty of discovery. Shop now!

The findings, published in Nature Cell Biology on February 8, 2024, offer many new targets for therapeutics to disrupt the inflammatory pathway and therefore mitigate inflammation during aging and diseases, like lupus or rheumatoid arthritis.

"We knew that mtDNA was escaping mitochondria, but how was still unclear," says senior and co-corresponding author Professor Gerald Shadel, director of the San Diego-Nathan Shock Center of Excellence in the Basic Biology of Aging and holder of the Audrey Geisel Chair in Biomedical Science at Salk. "Using imaging and cell biology approaches, we're able to trace the steps of the pathway for moving mtDNA out of the mitochondria, which we can now try to target with therapeutic interventions to hopefully prevent the resulting inflammation."


Sign up for the Daily Dose Newsletter and get every morning's best science news from around the web delivered straight to your inbox? It's easy like Sunday morning.

By clicking submit, you agree to share your email address with the site owner and Mailchimp to receive marketing, updates, and other emails from the site owner. Use the unsubscribe link in those emails to opt out at any time.

Processing…
Success! You're on the list.
Whoops! There was an error and we couldn't process your subscription. Please reload the page and try again.

One of the ways our cells respond to damage and infection is with what's known as the innate immune system. While the innate immune response is the first line of defense against viruses, it can also respond to molecules the body makes that simply resemble pathogens—including misplaced mtDNA. This response can lead to chronic inflammation and contribute to human diseases and aging.

Scientists have been working to uncover how mtDNA leaves mitochondria and triggers the innate immune response, but the previously characterized pathways did not apply to the unique mtDNA stress conditions the Salk team was investigating. So, they turned to sophisticated imaging techniques to gather clues as to where and when things were going awry in those mitochondria.

"We had a huge breakthrough when we saw that mtDNA was inside of a mysterious membrane structure once it left mitochondria—after assembling all of the puzzle pieces, we realized that structure was an endosome," says first author Laura Newman, former postdoctoral researcher in Shadel's lab and current assistant professor at the University of Virginia. "That discovery eventually led us to the realization that the mtDNA was being disposed of and, in the process, some of it was leaking out."

The team discovered a process beginning with a malfunction in mtDNA replication that caused mtDNA-containing protein masses called nucleoids to pile up inside of mitochondria. Noticing this malfunction, the cell then begins to remove the replication-halting nucleoids by transporting them to endosomes, a collection of organelles that sort and send cellular material for permanent removal. The endosome gets overloaded with these nucleoids, springs a leak, and mtDNA is suddenly loose in the cell. The cell flags that mtDNA as foreign DNA—the same way it flags a virus's DNA—and initiates the DNA-sensing cGAS-STING pathway to cause inflammation.

"Using our cutting-edge imaging tools for probing mitochondria dynamics and mtDNA release, we have discovered an entirely novel release mechanism for mtDNA," says co-corresponding author Uri Manor, former director of the Waitt Advanced Biophotonics Core at Salk and current assistant professor at UC San Diego. "There are so many follow-up questions we cannot wait to ask, like how other interactions between organelles control innate immune pathways, how different cell types release mtDNA, and how we can target this new pathway to reduce inflammation during disease and aging."

The researchers hope to map out more of this complicated mtDNA-disposal and immune-activation pathway, including what biological circumstances—like mtDNA replication dysfunction and viral infection—are required to initiate the pathway and what downstream effects there may be on human health. They also see an opportunity for therapeutic innovation using this pathway, which represents a new cellular target to reduce inflammation.

IMAGE CREDIT: Salk Institute


If you enjoy the content we create and would like to support us, please consider becoming a patron on Patreon! By joining our community, you'll gain access to exclusive perks such as early access to our latest content, behind-the-scenes updates, and the ability to submit questions and suggest topics for us to cover. Your support will enable us to continue creating high-quality content and reach a wider audience.

Join us on Patreon today and let's work together to create more amazing content! https://www.patreon.com/ScientificInquirer



Comment

Scientific Inquirer © 2024. Manage your email settings or unsubscribe.

WordPress.com and Jetpack Logos

Get the Jetpack app

Subscribe, bookmark, and get real-time notifications - all from one app!

Download Jetpack on Google Play Download Jetpack from the App Store
WordPress.com Logo and Wordmark title=

Automattic, Inc. - 60 29th St. #343, San Francisco, CA 94110  

at February 16, 2024
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest

No comments:

Post a Comment

Newer Post Older Post Home
Subscribe to: Post Comments (Atom)

JHI Blog: Recent posts

...

  • [New post] My Week In Books (15 Aug 2021) #booklove #bookupdate #MeAndMyBooks
    yvonnembee posted: " I have had a great week with the book reading, there have been some fabulous ones. The weather here ha...
  • [New post] 6 Apps You Must Add to Your iPhone ASAP | FinanceBuzz
    lhvi3...
  • [New post] Is Chicken In A Biskit Coming Back? We Just Got Word That It Might Be
    trentbartlett posted: "Rumours around this snack's return have been floating around the internet for a little while now...

Search This Blog

  • Home

About Me

Today's news in major cities, regional and local areas which can include accident reports, police & emergency responses, criminal and court proceedings or live
View my complete profile

Report Abuse

Blog Archive

  • January 2026 (8)
  • December 2025 (17)
  • November 2025 (10)
  • October 2025 (13)
  • September 2025 (10)
  • August 2025 (8)
  • July 2025 (5)
  • June 2025 (7)
  • May 2025 (3)
  • April 2025 (10)
  • March 2025 (8)
  • February 2025 (6)
  • January 2025 (4)
  • December 2024 (6)
  • November 2024 (8)
  • October 2024 (9)
  • September 2024 (8)
  • August 2024 (5)
  • July 2024 (10)
  • June 2024 (10)
  • May 2024 (11)
  • April 2024 (4)
  • March 2024 (1462)
  • February 2024 (3037)
  • January 2024 (3253)
  • December 2023 (3238)
  • November 2023 (3122)
  • October 2023 (3010)
  • September 2023 (2524)
  • August 2023 (2299)
  • July 2023 (2223)
  • June 2023 (2164)
  • May 2023 (2229)
  • April 2023 (2135)
  • March 2023 (2236)
  • February 2023 (2171)
  • January 2023 (2326)
  • December 2022 (2500)
  • November 2022 (2470)
  • October 2022 (2648)
  • September 2022 (1909)
  • August 2022 (1839)
  • July 2022 (1856)
  • June 2022 (1969)
  • May 2022 (2411)
  • April 2022 (2354)
  • March 2022 (1867)
  • February 2022 (1013)
  • January 2022 (1050)
  • December 2021 (1620)
  • November 2021 (3122)
  • October 2021 (3276)
  • September 2021 (3145)
  • August 2021 (3259)
  • July 2021 (3084)
Powered by Blogger.